翻訳と辞書
Words near each other
・ Change (Hyuna song)
・ Chang'an University
・ Chang'an Z-Shine
・ Chang'an, Dongguan
・ Chang'ao
・ Chang'e
・ Chang'e (disambiguation)
・ Chang'e 1
・ Chang'e 2
・ Chang'e 3
・ Chang'e 4
・ Chang'e 5
・ Chang'e 5-T1
・ Chang'e 6
・ Chang'ombe
Chang's conjecture
・ Chang's model
・ Chang, Bhiwani
・ Chang, Iran
・ Chang-dong
・ Chang-dong Station
・ Chang-Du dialect
・ Chang-Gu World Trade Center
・ Chang-ho
・ Chang-Hong Art Gallery
・ Chang-hoon
・ Chang-Jin Lee
・ Chang-ki Cup
・ Chang-Lin Tien
・ Chang-min (name)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Chang's conjecture : ウィキペディア英語版
Chang's conjecture
In model theory, a branch of mathematical logic, Chang's conjecture, attributed to Chen Chung Chang by , states that every model of type (ω21) for a countable language has an elementary submodel of type (ω1, ω). A model is of type (α,β) if it is of cardinality α and a unary relation is represented by a subset of cardinality β. The usual notation is (\omega_2,\omega_1)\twoheadrightarrow(\omega_1,\omega).
The axiom of constructibility implies that Chang's conjecture fails. Silver proved the consistency of Chang's conjecture from the consistency of an ω1-Erdős cardinal. Hans-Dieter Donder showed the reverse implication: if CC holds, then ω2 is ω1-Erdős in K.
More generally, Chang's conjecture for two pairs (α,β), (γ,δ) of cardinals is the claim
that every model of type (α,β) for a countable language has an elementary submodel of type (γ,δ).
The consistency of (\omega_3,\omega_2)\twoheadrightarrow(\omega_2,\omega_1) was shown by Laver from the consistency of a huge cardinal.
==References==

*
*


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Chang's conjecture」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.